Phosphorylation of apoptosis repressor with caspase recruitment domain by protein kinase CK2 contributes to chemotherapy resistance by inhibiting doxorubicin induced apoptosis

نویسندگان

  • Jianxun Wang
  • Chang Feng
  • Yuqi He
  • Wei Ding
  • Jianqiu Sheng
  • Muhammad Arshad
  • Xiaojie Zhang
  • Peifeng Li
چکیده

The development of cancer resistance to chemotherapy is the major obstacle to cancer therapy. Here, we identified that the phosphorylation of apoptosis repressor with caspase recruitment domain (ARC) at threonine 149 was essential to inhibit doxorubicin (DOX) induced apoptosis and mitochondrial fission in cancer cells. Our further study showed that casein kinase II (CK2) inhibitors could decrease the phosphorylation levels of ARC and make cancer cells sensitive to undergoing apoptosis. Furthermore, CK2α and CK2α', catalytic subunits of CK2, were observed to translocate into nuclear in cancer cells with the treatment of DOX. Finally, the synergistically therapeutic effect by combining DOX and CK2 inhibitor was confirmed in tumor xenograft model. Taken together, our results revealed that CK2-mediated phosphorylation of ARC contributed to chemotherapy resistance by inhibiting DOX induced apoptosis and combining DOX with CK2 inhibitor could induce apoptosis of cancer cells synergistically by down-regulating the phosphorylation of ARC. Therefore, development of new therapeutic strategies based on ARC and CK2, is promising for overcoming cancer resistance to chemotherapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy

Objective(s):  The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...

متن کامل

Apoptosis repressor with caspase recruitment domain contributes to chemotherapy resistance by abolishing mitochondrial fission mediated by dynamin-related protein-1.

One obstacle of cancer therapy is the development of cancer resistance to chemotherapy. The molecular mechanisms by which the resistance is developed remain to be fully understood. Apoptosis repressor with caspase recruitment domain (ARC) is an endogenous antiapoptotic protein. Here, we report that ARC contributes to chemotherapy resistance by abolishing mitochondrial fission mediated by dynami...

متن کامل

Elevation of cAMP Levels Inhibits Doxorubicin-Induced Apoptosis in Pre- B ALL NALM- 6 Cells Through Induction of BAD Phosphorylation and Inhibition of P53 Accumulation

Recognition of the molecular mechanisms of cAMP action against DNA damage-induced apoptosis can be useful to improve the efficacy of DNA damaging therapeutic agents. Considering the critical role of bcl-2-associated death promoter (BAD) and p53 proteins in DNA damage -induced apoptosis, the aim of this study was to assess the effect of cAMP-elevating agents on these proteins in doxorubicin-trea...

متن کامل

Hydrogen sulfide protects cardiomyocytes from myocardial ischemia-reperfusion injury by enhancing phosphorylation of apoptosis repressor with caspase recruitment domain.

Hydrogen sulfide (H(2)S) displays an anti-apoptotic activity against myocardial ischemia reperfusion (MIR). Apoptosis repressor with caspase recruitment domain (ARC) is constitutively expressed in the heart and inhibits cell apoptosis when it is phosphorylated. Here, we investigated whether H(2)S could inhibit apoptosis by affecting ARC phosphorylation using cultured rat cardiomyocytes and a ...

متن کامل

Novel cardiac apoptotic pathway: the dephosphorylation of apoptosis repressor with caspase recruitment domain by calcineurin.

BACKGROUND Apoptosis repressor with caspase recruitment domain (ARC) is abundantly expressed in cardiomyocytes. Protein kinase CK2 can phosphorylate ARC at threonine-149, thereby enabling ARC to antagonize apoptosis. ARC phosphorylation occurs in a constitutive manner. Nevertheless, cardiomyocytes still undergo apoptosis that is related to cardiac diseases such as myocardial infarction and hear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015